题目描述
现有一块大奶酪,它的高度为 h,它的长度和宽度我们可以认为是无限大的,奶酪 中间有许多 半径相同 的球形空洞。我们可以在这块奶酪中建立空间坐标系,在坐标系中, 奶酪的下表面为z = 0,奶酪的上表面为z = h。
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐 标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别 地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;如果 一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在 不破坏奶酪 的情况下,能否利用已有的空洞跑 到奶酪的上表面去?
空间内两点P1(x1,y1,z1)、P2(x2,y2,z2)的距离公式如下:
dist(P1,P2)=sqrt((x1−x2)^2+(y1−y2)^2+(z1−z2)^2)
输入描述
输入第一行,包含一个正整数 T,代表该输入文件中所含的数据组数。
接下来是 T组数据,每组数据的格式如下: 第一行包含三个正整数 n,h和 r,两个数之间以一个空格分开,分别代表奶酪中空 洞的数量,奶酪的高度和空洞的半径。
接下来的 n 行,每行包含三个整数 x,y,z 两个数之间以一个空格分开,表示空 洞球心坐标为(x,y,z)。
输出描述
输出T 行,分别对应 T 组数据的答案,如果在第 i 组数据中,Jerry 能从下 表面跑到上表面,则输出 Yes,如果不能,则输出 No (均不包含引号)。
样例输入
3
2 4 1
0 0 1
0 0 3
2 5 1
0 0 1
0 0 4
2 5 2
0 0 2
2 0 4
样例输出
Yes
No
Yes
提示